1,001 research outputs found

    Low Star Formation Rates for z=1 Early-Type Galaxies in the Very Deep GOODS-MIPS Imaging: Implications for their Optical/Near-Infrared Spectral Energy Distributions

    Get PDF
    We measure the obscured star formation in z~1 early-type galaxies. This constrains the influence of star formation on their optical/near-IR colors, which, we found, are redder than predicted by the model by Bruzual & Charlot (2003). From deep ACS imaging we construct a sample of 95 morphologically selected early-type galaxies in the HDF-N and CDF-S with spectroscopic redshifts in the range 0.85<z<1.15. We measure their 24 micron fluxes from the deep GOODS-MIPS imaging and derive the IR luminosities and star formation rates. The fraction of galaxies with >2 sigma detections (~25 muJy} is 17(-4,+9)%. Of the 15 galaxies with significant detections at least six have an AGN. Stacking the MIPS images of the galaxies without significant detections and adding the detected galaxies without AGN we find an upper limit on the mean star formation rate (SFR) of 5.2+/-3.0 Msol yr^-1, and on the mean specific SFR of 4.6+/-2.2 * 10^-11 yr^-1. Under the assumption that the average SFR will decline at the same rate as the cosmic average, the in situ growth in stellar mass of the early-type galaxy population is less than 14+/-7% between z=1 and the present. We show that the typically low IR luminosity and SFR imply that the effect of obscured star formation (or AGN) on their rest-frame optical/near-IR SEDs is negligible for ~90% of the galaxies in our sample. Hence, their optical/near-IR colors are most likely dominated by evolved stellar populations. This implies that the colors predicted by the Bruzual & Charlot (2003) model for stellar populations with ages similar to those of z~1 early-type galaxies (~1-3 Gyr) are most likely too blue, and that stellar masses of evolved, high-redshift galaxies can be overestimated by up to a factor of ~2.Comment: Accepted for publication in ApJ, 8 pages, 4 figures, 1 tabl

    Keck Spectroscopy of distant GOODS Spheroidal Galaxies: Downsizing in a Hierarchical Universe

    Full text link
    We analyze the evolution of the Fundamental Plane for 141 field spheroidal galaxies in the redshift range 0.2<z<1.2, selected morphologically to a magnitude limit F850LP=22.43 in the northern field of the Great Observatories Origin Survey. For massive galaxies we find that the bulk of the star formation was completed prior to z=2. However, for the lower mass galaxies, the luminosity-weighted ages are significantly younger. The differential change in mass-to-light ratio correlates closely with rest-frame color, consistent with recent star formation and associated growth. Our data are consistent with mass rather than environment governing the overall growth, contrary to the expectations of hierarchical assembly. We discuss how feedback, conduction, and galaxy interactions may explain the downsizing trends seen within our large sample.Comment: ApJ Letters, in press. 4 figure

    Mass-to-Light Ratios of Field Early-Type Galaxies at z~1 from Ultra-Deep Spectroscopy: Evidence for Mass-dependent Evolution

    Get PDF
    We present an analysis of the Fundamental Plane for a sample of 27 field early-type galaxies in the redshift range 0.6<z<1.15. The galaxies in this sample have high S/N spectra obtained at the VLT and high resolution imaging from the ACS. We find that the mean evolution in M/L of our sample is Deltaln(M/LB)=−1.74+/−0.16zDelta ln (M/L_B) = -1.74+/-0.16z, with a large galaxy-to-galaxy scatter. This value can be too low by 0.3 due to selection effects, resulting in Deltaln(M/LB)=−1.43+/−0.16zDelta ln (M/L_B) = -1.43+/-0.16z. The strong correlation between M/L and rest-frame color indicates that the observed scatter is not due to measurement errors, but due to intrinsic differences between the stellar populations of the galaxies. This pace of evolution is much faster than the evolution of cluster galaxies. However, we find that the measured M/L evolution strongly depends on galaxy mass. For galaxies with masses M>2x1011MsolM>2 x 10^11 Msol, we find no significant difference between the evolution of field and cluster galaxies: Deltaln(M/LB)=−1.20+/−0.18zforfieldgalaxiesandDelta ln (M/L_B) = -1.20+/-0.18z for field galaxies and Delta ln (M/L_B) = -1.12+/-0.06z$ for cluster galaxies. The relation between the measured M/L evolution and mass is partially due to selection effects. However, even when taking selection effects into account, we still find a relation between M/L evolution and mass, which is most likely caused by a lower mean age and a larger intrinsic scatter for low mass galaxies. Results from lensing early-type galaxies, which are mass-selected, show a very similar trend with mass. This, combined with our findings, provides evidence for down-sizing. Previous studies of the rate of evolution of field early-type galaxies found a large range of mutually exclusive values. We show that these differences are largely caused by the differences between fitting methods. (Abridged)Comment: figures 3 and 4 available at http://www.strw.leidenuniv.nl/~vdwel/private/FPpaper

    The Evolution of Rest-Frame K-band Properties of Early-Type Galaxies from z=1 to the Present

    Get PDF
    We measure the evolution of the rest-frame K-band Fundamental Plane from z=1 to the present by using IRAC imaging of a sample of early-type galaxies in the Chandra Deep Field-South at z~1 with accurately measured dynamical masses. We find that M/LKM/L_K evolves as Δln⁥(M/LK)=(−1.18±0.10)z\Delta\ln{(M/L_K)}=(-1.18\pm0.10)z, which is slower than in the B-band (Δln⁥(M/LB)=(−1.46±0.09)z\Delta\ln{(M/L_B)}=(-1.46\pm0.09)z). In the B-band the evolution has been demonstrated to be strongly mass dependent. In the K-band we find a weaker trend: galaxies more massive than M=2×1011M⊙M=2\times10^{11}M_{\odot} evolve as Δln⁥(M/LK)=(−1.01±0.16)z\Delta\ln{(M/L_K)}=(-1.01\pm0.16)z; less massive galaxies evolve as Δln⁥(M/LK)=(−1.27±0.11)z\Delta\ln{(M/L_K)}=(-1.27\pm0.11)z. As expected from stellar population models the evolution in M/LKM/L_K is slower than the evolution in M/LBM/L_B. However, when we make a quantitative comparison, we find that the single burst Bruzual-Charlot models do not fit the results well, unless large dust opacities are allowed at z=1. Models with a flat IMF fit better, Maraston models with a different treatment of AGB stars fit best. These results show that the interpretation of rest-frame near-IR photometry is severely hampered by model uncertainties and therefore that the determination of galaxy masses from rest-frame near-IR photometry may be harder than was thought before.Comment: 5 pages, 3 figures, Accepted for publication in ApJ

    Dynamical Models of Elliptical Galaxies in z=0.5 Clusters: II. Mass-to-Light Ratio Evolution without Fundamental Plane Assumptions

    Get PDF
    We study M/L evolution of early-type galaxies using dynamical modeling of resolved internal kinematics. This makes fewer assumptions than Fundamental Plane (FP) studies and provides a powerful new approach for studying galaxy evolution. We focus on the sample of 25 galaxies in clusters at z=0.5 modeled in Paper I. For comparison we compile and homogenize M/L literature data for 60 nearby galaxies that were modeled in comparable detail. The nearby sample obeys log(M/L)_B = Z + S log(sigma_eff/[200 km/s]), with Z = 0.896 +/- 0.010, S = 0.992 +/- 0.054, and sigma_eff the effective velocity dispersion. The z=0.5 sample follows a similar relation but with lower zeropoint. The implied M/L evolution is Delta log(M/L) / Delta z = -0.457 +/- 0.046(random) +/- 0.078(systematic), consistent with passive evolution following high-redshift formation. This agrees with the FP results for this sample by van Dokkum & van der Marel. This confirms that FP evolution tracks M/L evolution, which is an important verification of the assumptions that underly FP studies. However, while we find more FP evolution for galaxies of low sigma_eff (or low mass), the dynamical M/L evolution instead shows little trend with sigma_eff. We argue that this difference can be plausibly attributed to a combination of two effects: (a) evolution in structural galaxy properties other than M/L; and (b) the neglect of rotational support in studies of FP evolution. The results leave the question open whether the low-mass galaxies in the sample have younger population ages than the high-mass galaxies. This highlights the general importance in the study of population ages for complementing dynamical measurements with broad-band colors or spectroscopic population diagnostics.Comment: ApJ, submitted; 17 pages formatted with emulateap

    Measuring the evolution of the M/L ratio from the fundamental plane in CL 0024+16 at z=0.39

    Get PDF
    The existence of the Fundamental Plane of early-type galaxies implies that the M/L ratios of early-types are well behaved. It provides therefore an important tool to measure the evolution of the M/L ratio with redshift. These measurements, in combination with measurements of the evolution of the luminosity function, can be used to constrain the mass evolution of galaxies. We present the Fundamental Plane relation measured for galaxies in the rich cluster CL 0024+16 at z=0.391. The galaxies satisfy a tight Fundamental Plane, with relatively low scatter (15 %). The M/L is 31 +- 12 % lower than the M/L measured in Coma, which is consistent with simple evolutionary models. Hence, galaxies with very similar dynamical properties existed at a z=0.4. More, and deeper data are needed to measure the evolution of the slope and the scatter of the Fundamental Plane to higher accuracy. Furthermore, data on the richest nearby clusters would be valuable to test the hypothesis that the Fundamental Plane is independent of cluster environment

    Infall, the Butcher-Oemler Effect, and the Descendants of Blue Cluster Galaxies at z~0.6

    Full text link
    Using wide-field HST/WFPC2 imaging and extensive Keck/LRIS spectroscopy, we present a detailed study of the galaxy populations in MS2053--04, a massive, X-ray luminous cluster at z=0.5866. Analysis of 149 confirmed cluster members shows that MS2053 is composed of two structures that are gravitationally bound to each other; their respective velocity dispersions are 865 km/s (113 members) and 282 km/s (36 members). MS2053's total dynamical mass is 1.2x10^15 Msun. MS2053 is a classic Butcher-Oemler cluster with a high fraction of blue members (24%) and an even higher fraction of star-forming members (44%), as determined from their [OII] emission. The number fraction of blue/star-forming galaxies is much higher in the infalling structure than in the main cluster. This result is the most direct evidence to date that the Butcher-Oemler effect is linked to galaxy infall. In terms of their colors, luminosities, estimated internal velocity dispersions, and [OII] equivalent widths, the infalling galaxies are indistinguishable from the field population. MS2053's deficit of S0 galaxies combined with its overabundance of blue spirals implies that many of these late-types will evolve into S0 members. The properties of the blue cluster members in both the main cluster and infalling structure indicate they will evolve into low mass, L<L* galaxies with extended star formation histories like that of low mass S0's in Coma. Our observations show that most of MS2053's blue cluster members, and ultimately most of its low mass S0's, originate in the field. Finally, we measure the redshift of the giant arc in MS2053 to be z=3.1462; this object is one in only a small set of known strongly lensed galaxies at z>3.Comment: Accepted by ApJ. Version with full resolution figures available at http://www.exp-astro.phys.ethz.ch/tran/outgoing/ms2053.ps.g
    • 

    corecore